(5u^2)+(-50)=01

Simple and best practice solution for (5u^2)+(-50)=01 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5u^2)+(-50)=01 equation:



(5u^2)+(-50)=01
We move all terms to the left:
(5u^2)+(-50)-(01)=0
determiningTheFunctionDomain 5u^2-01+(-50)=0
We add all the numbers together, and all the variables
5u^2-51=0
a = 5; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·5·(-51)
Δ = 1020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1020}=\sqrt{4*255}=\sqrt{4}*\sqrt{255}=2\sqrt{255}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{255}}{2*5}=\frac{0-2\sqrt{255}}{10} =-\frac{2\sqrt{255}}{10} =-\frac{\sqrt{255}}{5} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{255}}{2*5}=\frac{0+2\sqrt{255}}{10} =\frac{2\sqrt{255}}{10} =\frac{\sqrt{255}}{5} $

See similar equations:

| 363x=2 | | 544/36*x=14 | | 9c-7=-61 | | 4m=-56 | | m-8=32 | | 2/x2=3 | | 19-10z=9z | | 2/8x+16=20 | | 30C4*(1/5)^4*(4/5)^4=x | | 2b-14=84 | | 5x^2+13x=1 | | 2x^2-(9x)=221 | | 5x+25=250-100 | | 7×12=a×4 | | 12x=10x+4 | | 3(a-1)-4a=5-2(a+1) | | 3+.05x=24 | | 3y(4y+11)-9=0 | | 3x+40=8x-60 | | -3/x-17=7 | | -2v-8=-4(v+4) | | -6s=-108 | | ((x2-6)/2)-((x2+4)/4)=5 | | 6{w+3}=72 | | 2+6*n=32 | | 2*n-4=10 | | 7n+6n=26 | | (10-p)/10=1/2 | | 7x+25=99 | | 7x-3/8=3/4x-(1/8+1/4) | | (2x+9)(x=3) | | I6y-3I+8=35 |

Equations solver categories